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This paper investigates the boundary-layer characteristics on a helical blade of 
large chord length, enclosed in an annulus and rotating in a fluid otherwise at  
rest. The three-dimensional form of momentum integral equations is derived, 
and used to predict the boundary-layer growth and limiting streamline angles 
on the blade surface. The measurements are in general agreement with the pre- 
dictions. The wall shear stress correlation, which includes both Reynolds number 
and rotation parameters, valid for a rotating blade operating at zero pressure 
gradient, is derived. Radial and tangential velocity profiles, the tangential com- 
ponent of turbulence intensity and blade static pressures are measured a t  
several locations on the blade surface. The nature of flow near the blade tip is 
discussed. An expression for the radial velocity profile, valid in the outer region 
of the boundary layer, is derived theoretically. 

1. Introduction 
The boundary layer that develops on the blades of rotating fluid machinery 

(as e.g. with a compressor, turbine or helicopter blade) is not two-dimensional. 
There are centrifugal and Coriolis forces, which, in addition to pressure and vis- 
cous forces, make the direction of the flow inside the boundary layer different 
from the flow outside, thus forming a three-dimensional flow configuration. 
The following are the rotating boundary layers of this nature studied previously: 
(i) laminar boundary layers on a rotating blade of small chord length (Horlock 
& Wordsworth 1965; Pogerty 1951 ; Banks & Gadd 19621, (ii) turbulent boundary 
layers on axisymmetric bodies such as a disk or cylinder (von K&rm&n 1946; 
Cham & Head 1969; Banks & Gadd 1962), (iii) turbulent boundary layers in a 
centrifugal impeller, where the rotation is about an axis perpendicular to the 
flow (Johnston 1970; Moore 1969). 

Lack of information about the boundary-Sayer characteristics of a rotating 
blade of large chord length (as used e.g. in rocket feed pumps: Lakshminarayana 
1970) prompted this investigation. But, even though it is confined to such a 
configuration, the theoretical and experimental results on boundary-layer growth, 
velocity profiles, wall shear stress and turbulence intensities are widely applicable 
to other types of rotating boundary layers: that on turbomachinery blades has 
many three-dimensional featuresin commonwith, e.g., geophysicalflows. Arocket 
pump inducer is usually an axial pump runner, having very high solidity (chord/ 
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spacing), and very low aspect ratio (height/chord) blades, and operates at  very 
low coefficient (ratio of inlet velocity to blade speed); the present study of the 
turbulent boundary layer on a single blade is the first step in a programme to find 
the information necessary t o  predict the flow in fluid machinery, such as a rocket 
pump inducer, that is dominated by viscous and turbulence effects. 

The turbulent-boundary-layer characteristics of a rotating blade of large chord 
length, enclosed in an annulus as shown in figure 1, are investigated by both 
analysis and experiment. The blade rotates with an angular velocity Q in a fluid 
otherwise at rest. The axial velocities are thus entirely due to frictional effects, 
and the pressure gradients are zero everywhere in the free stream. In $2 a flow 
model, governing equations and approximate methods of solutions are proposed; 
in $5  3 and 4 there is a detailed presentation of the experimental programme and 
results, including velocity profiles, boundary-layer growth, and nature of the 
flow in the tip region; § $ 5  and 6 include general discussion and conclusions. 

2. Theoretical considerations 
2.1. Flow model and governing equations 

For the purpose of flow analysis, the helical surface (figure l), whose pitch is 
very small, is approximated by a flat circular plate with a leading and trailing 
edge. The calculation makes use of this, but the asymmetry of the flow that would 
prevail in the case of a helical blade is taken into account (i.e. it is assumed that 

S h k W 2 > k * \ R X \  
FIGURE 1. Schematic of the test assembly. 
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the trailingedge does not influence the leading edge). This model is similar to those 
of Banks & Gadd (1962). 

A rotating cylindrical co-ordinate system ( r ,  8, z ) ,  as indicated in figure 2,  is 
chosen. In  the framework of boundary-layer theory, it is assumed that the 
pressure gradient of the main flow is imposed on the viscous layer near the wall. 

Leading 
edge 

FIGURE 2. co 
r tan a=c 
J 

-ordinate system: nature of cross- and main -flow velocity profiles. 

That assumption implies, in this case, that grad P/p = 0. Equations of mean 
motion for turbulent flow on a rotating helical blade can thus be written as 

iau av aw w 
r a8 az ar r 

+-+-+- = 0, _-  

where u, v, w are mean velocities in 8, x and r directions, Q is the angular velocity 
of the blade, r is the local radius and 7, and rw are shear stress in the direction of 
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u and w. The flow is assumed to be incompressible, and steady relative to the 
blade. 

Momentum integral equations for the flow are 

where the subscript 0 refers to values at the blade surface. The various boundary- 
layer thicknesses are defined by 

O,, = -, (Qr -u )wdz ,  
(fir) S” 0 

The general velocity profiles on a rotating blade look like those of figure 2. 
The first general model, proposed by Prandtl, is 

u/Qr = G(ll), w/Qr = sG(ll)g(ll), (12), (13) 

where 7 = z/S, E = tana,’and ais the limiting streamline angle (figure 2). E is closely 
related to the frictional character of the flow. Given the available information 
on three-dimensional boundary layers, the following assumptions are made 
about the velocity profiles and shear stress (Mager 1951): 

(7 = $, g = ( l -v) , ,  (14) 

T0,Jp( fir), = 0.01255(R,ll)-~, (15) 

T0,w = ETo,u, (16) 

where ROll = firO,,/v is the Reynolds number based on momentum thickness. 
Since there are no pressure gradients in the flow, either Coles’s profile or the 

4th profile can be used for the tangential velocity. Even though a theoretical 
expression for the radial velocity profile, valid in the outer layer, is derived in 9 4.4 
its incorporation in the momentum equations presents some difficulty, since the 
extent of the region in which this profile is applicable cannot be determined 
theoretically. The shear stress expression used is that for a stationary flat plate, 
and this does not take into account the rotational effects (see $4.7). 
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Substituting (12)-( 15) into (7)-( 1 l),  all the boundary-layer thicknesses can be 
expressed in terms of el,. Substituting these, and the shear stress (16), into (4) 
and (5), one obtains 

as 
ae ar l1 ar 
3' + 2.14@11s + 0.535rs 3' + 0.5350 r - = 0.01255r (Roll)-*, (17) 

a(€@,,) ao 
2~12----0~2857@,1+3~3@11s2+ 1 . 1 1 e 2 r L 1  ae ar 

as + 2-22011sr - = - 0 . 0 1 2 5 5 ~  (Bell)d. (18) 

Using the transformation A = @ll(Bol~)4, (1 7) and (1 8) can be simplified to give 

ar 

(19) 
aa -+ 2.526As + 0 . 5 3 5 ~  + 0-666Ar 2 = 0*0156r, ae ar ar 

and 
as aA aA as 
ae ae ar ar 

A - + 0.8 e - - 0.1345A + 1.47As2 + 0.415s2r - + 1.06 Am - + 0.0059 ~r = 0. 

(20) 

Equations (19) and (20), with the boundary conditions A = s = 0 at 8 = r = 0, 
provide the relationship for the limiting streamline angle a, and the momentum 
thickness A (or all), at various r and 0. 

The analytical solution of (19) and (20) is extremely difficult. At any given 
radius, the momentum thickness should reach a constant value at a certain dis- 
tance 6' from the leading edge. Hence, an asymptotic solution valid for large 8 
is first derived in $2.2, assuming aA/aO = as/%' = 0. Based on this analysis, a 
solution valid for the developing region is derived in $2.3. Then, in $2.4, an at- 
tempt is made to incorporate the effects of the laminar region near the leading 
edge of the blade . 

The analysis of $$2.2-2.4 neglects the constraint of the annulus wall. On 
physical grounds, it can be argued that s reaches zero, and that aA/ar is large 
near the blade tip (for the flow at the tip and a method of calculating a,, and s 
there see $4.6). 

2.2. Asymptotic solution 8/88 = 0 

In  52.2 (19) and (20) are solved analytically under the condition = 0. 
If ajae terms are dropped from (19) and (20), they should reduce to the equations 
of an axisymmetric disk; and Cham & Head (1969) concluded, from the numerical 
solution of these equations, that s is nearly invariant with the radius, and that 
the assumption that a s p  = 0 results in only a 5% error in the prediction of 
ell. The asymptotic solution of (19) and (20), based on this assumption, leads to 

A = 5.05 x 10-3r/s and s = 0.21. (21) 

2.3. Xolution for the developing region 
The solution of (19) and (20) in the developing region (a/%' 9 0 )  is based on 
the asymptotic solution. It is assumed that it has the form 

A = rF(0) and 8 = e(0). (221, (23) 
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dF/dB+ 3 .061P~  = 0.0156, (24) 

(25) d€/d6 = - 0*0184€/F + 0.135 + 0 . 5 8 5 ~ ~ .  

Equations (24) and (25) are solved numerically using the fourth-order Runge- 
Kutta method. The initial conditions are P = E = 0 at 0 = 0; the effect of con- 
straint due to hub and annulus walls is neglected (see $4.6). The values of the 
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FIGURE 3. Tangential variation of momentum thickness all. 
(a )  ( b )  (c) (4 
92.3 52.4 $2.4 §2,4 

Predicted {---.- § 5  $ 5  
- - . - - - - Flat plate $2.3 (fully turbulent) 

Measured 0 R = 0.55 0.72 0.82 0.93 
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momentum thickness O,, at  various distances from the leading edge, derived 
from 

O,, = r .F(R~l l ) -~ ,  (26) 

are plotted in figure 3(a)  for a rotating blade a t  R = 0.55, Q = 47rad sec-l and 
v = 160 x 10-6ft2 sec-l. The corresponding B distribution is plotted in figure 4(a). 
Both the plots are for fully turbulent flow. The asymptotic values of O,, derived 
from this numerical solution are the same as those obtained from (21). The 
analytical solution of (24) and (25), neglecting second-order terms such as 9 and 
&, gives P = 0.01560 and B = 0.06218 near the leading edge. 

1 1 3 3 5 6  

0, rad 0, rad 

FIGURE 4. Variation of limiting streamline angle cc ( =  arctan 6 )  with 8. Length of vertical 
line represents extent of scatter in data. 

Predicted Measured 
A P r -l 

(a) $2.4 $2.4 (fully turbulent) R = 0.65 0.74 0.84 
(b) $2.4 52.4 (fully turbulent) 0-965 0.89 

0 n 0 - _._._ 

The main conclusions of this analysis are (if that e and A vary linearly with 
8 near the leading edge, (ii) 011 reaches the asymptotic value at 8 N 3rad, 
(iii) that the momentum thickness is much less than that of a corresponding 
(free-stream velocity Qr) stationary flat plate (figure 3 (a) ) ,  for 0 > 0-5. Thecross 
or radial flow, even though small in the case investigated here, has considerable 
effect in reducing the boundary-layer growth on a rotating blade. 

2.4. Effect of laminar region near the leading edge 

An exact analysis of the laminar boundary layer on a rotating propeller blade, 
by Banks & Gadd (1962), indicates that the limiting streamline parameter e, 
near the leading edge is 1.808, whereas the corresponding value derived for 
turbulent flow from (24) and (25) is 0.06210. The fact that the radial flows are 
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likely to be much more severe in a laminar flow indicates that it is essential to 
incorporate these effects, if such there be, for accurate prediction of O,, and e. 

A slight modification is necessary to bring the prediction closer to reality. 
Using the critical Reynolds number criterion for a flat plate, 

c w o c r i t i c a l / V  = 3 x 105, 

the extent of initial laminar region Qcritical is calculated. Banks & Gadd's analysis 
is then used to predict O,, and E in the laminar region up to the point of transition. 
For 0 > Bcritical, the turbulent flow equations (24), (25 )  are used to predict O,, 
and e. The chord-wise (0) variation of 0,, and e so obtained are plotted in figures 
3 (b)-(d)  and 4 (a ) ,  (b )  for various radii. The measured values of O,, and E agree 
closely with the experiment (see $94.1 and 4.5). 

3. Experimental equipment and instrumentation 
3.1. Helical blade 

For the purpose of experiment, a helical blade of constant thickness, with an 
axial advance of loin., was built of fibreglass (see figure 1). The circumference 
of the blade was 300" from the leading edge. Metallic tubes of & in. dia. were em- 
bedded in the blade a t  30" intervals for a total of 10 stations. These tubes are 
used t o  determine the limiting streamline angle as well as blade static pressures. 
The measuring stations are designated in terms of 0 and radial location (e.g. 
0 = 150" and R = 0.55 refer to a tangential location 150" from the leading edge at 
a non-dimensional radius, with respect to tip radius, of 0-55). Unless otherwise 
stated, all measurements were carried out a t  the rotational speed of 450 rev/min 
corresponding to a Reynolds number of 7 x lo5 based on the tip radius. Since all 
the measurements were taken relative to the rotating system, the devices of 
Ss3.2-3.5 were used. 

3.2. Pressure transfer device 

This was a modified and improved version of the three channel PTD described 
by McCafferty (1967). The object was to transfer pressures from the rotating 
blade to a stationary precision manometer. The device was checked statically 
and dynamically, for any leak between the channels. The location of the PTD 
is shown in figure 1. 

3.3. Ammonia transfer device 

The ATD was similar to the PTD; it was used to transfer ammonia gas, from a 
stationary source of ammonia contained in a cylinder, t o  a desired location on the 
rotating blade surface. (For the method of measuring a,  see $4.1.) 

3.4. Slip ring unit 
A rotating hot-wire probe was used for measuring the turbulence intensities in 
the tangential direction. The output was brought through a slip ring unit, whose 
inner ring was made out of silver, the noise-to-signal ratio of which was found to  
be extremely small. Effects of probe vibration were also found to be negligible. 
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3.5. Probes 

Three different kinds of probe were used in measuring the stagnation pressure 
of the relative flow, flow angle within the boundary layer, and the wall shear 
stress. A two-hole yawmeter, made of 0.04in. (outside) dia. tubes, was used 
for flow angle measurements. The pre-calibrated probe was aligned in the tan- 
gential direction, and the pressure differential recorded. The calibration curve 
(2AP/p'V2 vs. a, where V is the resultant velocity (u2 + w2)d a t  the measuring point) 
was then used to determine the flow angle (Jabbari 1969). The turbulence in- 
tensity in the tangential direction was measured by means of a hot-wire (tung- 
sten) probe of 3p dia. and a length-to-diameter ratio of 300. The constant-tem- 
perature hot-wire anemometer used was of Wyngaard-Lumley (1967) design. 
All three kinds of probe were installed on the same mounting mechanism for 
different measurements. Figure 1 shows a schematic diagram of the traversing 
device. The distance between the mounter, and the point a t  which the data were 
obtained was sufficient (sin.) to ensure least interference with the flow in the 
boundary layer. 

4. Experimental results and comparison with predictions 
4.1. Flow visualization and limiting streamline angles 

To determine the extent of the initial laminar region, a flow visualization method 
was adopted which used a sublimation technique. After several trials the tech- 
nique of Richards & Burstall (1945) was found to be most suitable. The transition 
a t  mid radius (R = 0.75) occurred a t  0 = 41", which corresponds to a Reynolds 
number of 2-7 x lo5. This is slightly lower than critical Reynolds number used 
for OI1 and E prediction in $2.4.  The transition a t  all other radii occurred earlier 
than in the case of a flat plate, indicating that rotation effects an early transition. 
No laminar region exists near the hub tip locations of the blades. The sharp lead- 
ing edge of the blade caused early transition to turbulent flow, but relaminariza- 
tion occurred immediately a t  all radial positions, except near the hub and tip. 

The limiting streamline angle a was determined using the ATD of $3.3.  First, 
a number of small-diameter holes were drilled on the blade surface through the 
metallic tubes. Using the ATD, a small amount of ammonia gas a t  very low 
velocities was fed into the tubes at various tangential locations. A sheet of ozalid 
paper, sensitive to ammonia, was pasted along the edges of the static holes, 
so that traces of ammonia were recorded on it while the blade was in rotation. 
The amount of deflexion from the tangential :direction gave the value of a a t  
that  location. This procedure was repeated several times a t  each point to  make 
certain the angles obtained were accurate. The variation of a with 0 is given in 
figure 4. The vertical lines indicate the amount of experimental scatter. This 
experimental scatter, however, is only a few degrees a t  the most. 

Now compare the experimental and theoretical values of a plotted in figure 4. 
(i) It is seen that much larger values of a are obtained in the laminar region than 
in the turbulent region. This is in conformity with the analysis of Banks & 
Gadd (1962) for a screw propeller. (ii) At the trailing edge (0 > 5 rad), a consistent 
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decrease in values of a is observed at  all radii, accounting for the decay of the 
radial velocity as the flow leaves the trailing edge. 

The analysis of $ 2  does not take into account the constraint of the annulus 
wall, so that it predicts deldr = 0. Experimental results seem to indicate that this 
is true at  most of the radial locations except near the tip, where a decrease in a 
is observed ($4.6). Thus, it may be said that the theoretical prediction of E is 
reasonably good everywhere, except near the hub and tip locations (figure 4). 

4.2. Blade static pressure 

The analysis of $2 is based on the assumption that the pressure gradient of the 
flow is zero everywhere in the field. To check this assumption, the static pressures 
were measured on the surface, using the PTD and t h e  static holes drilled on the 

0 
a ,  0 ,  0 

1 0 '  od 
0.7 o x  0 0 . 9  1 0  

-G 0 1  0 '  
0,s 8 0.6 

0 .  I 1 R 

-n. i  1 R 

surface. The radial variations of the non-dimensionalized static pressure coeffi- 
cient $8 at two typical locations me plotted in figure 5 .  $s is defined as 

$s = 2gh/ ui, (27) 

where U, is the tip velocity, and h is the static head. As figure 5 shows, the radial 
pressure gradient is negligibly small throughout the flow field, except, perhaps, 
near the tip ($4.6 gives the reasons for the appreciable radial pressure gradient 
near the tip). 

4.3. Tangential velocity projiles? 

The measured tangential velocity profiles at various tangential and radial 
locations of the blade are plotted in figures 6 (a) ,  (b) .  Near the leading edge of the 
blade at  0 = 30" (figure 6 (a ) ) ,  the laminar type of profile exists a t  R = 0.72 and 
0.82. The measured values at these radial locations are compared with the 
theoretical profile of Banks & Gadd (1962). The agreement is good in the outer 

-f The boundary-layer data of $1 4.3-4.7 supersede those of Jabbari (1969). Some of 
the measurements were repeated, few corrected for probe errors. Those wishing to obtain 
the new data should contact B.L. 
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region of the boundary layer, the departure being greatest near the blade sur- 
face. Since the boundary layer is very thin in this region, the experimental 
accuracy is poor near the blade surface. The turbulent velocity profiles measured 
at various radial and tangential locations (figures 6 (a) ,  (b ) )  agree closely with the 

0 6 
& 
8 0.4 
. 

0 .2  

d 

0-X 

0.6 
b 

5 
3 

0.4 

t 0.2 

I I I I I I I 
3 0 - 4 6 8 10 12  

0 2 4 0  2 4 0  2 4 0  2. 4 0  2 1 6 x 10 

FIGURE 6. Tangential velocity profiles. 

(a) e = 300 ( b )  various 0 
* * 

r > f  3 

o a  0 A U U A  0 0 X 

R =  0.72 0.82 0.93 0.985 0.55 0.6 0.72 0.82 0.93 0.985 
\-<-J ‘-v-J -, tth profile 

Laminar Turbulent 

+th profile (or the Coles profile at  zero pressure gradient). Appreciable departure 
from the assumed profile was observed only near the blade tip, and close to the 
wall. The free-stream velocity is U = fir everywhere, except at  the tip, where a, 
core region, rotating with a velocity U, < Qr, is observed. This core velocity is 
used for non-dimensionalizing the local velocity for (flow measurement near the 
tip, see $4.6).  The scatter in the gathered data are larger than those normally 
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observed in proile measurements on a stationary body. Considering the diffi- 
culties involved in taking the measurements from a rotating probe, they show 
remarkable agreement with the power law profile. 

The mean velocity data u are shown in the conventional 'law of the wall ' 
form in figure 7. The experimental data seem to fit the logarithmic velocity dis- 
tribution of the form 

U~U"  = A log lo^+ + B 

u* & U'  V 

(28) 

(29) 
u 1.412 u zu* 

where - - U = Qr except a t  R = 0.985, z+ = - . 

log,,z+ 

FIGURE 7 .  Test of the law of the wall for the tangential velocity profile. 
270". -, U/U* = 5.8 log,, z++ 5.0. 

8 = 90°, 150°, 210", 

0 A 0 a + 
R = 0.6 0.72 0.83 0.93 0.985 
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The skin friction coefficients C, used in these plots are the experimental values 
derived from Preston's (1954) method, and described in 54.7. The data seem to 
fit (28) with A = 5.8 andB = 5.0. The departure of the data from this relationship 
occurs mostly at the hub and tip of the blade. The experimental accuracy of 
these measurements is poor in the hub region where the boundary layer is very 
thin, whereas the free-stream velocity a t  the tip does not reach the value 
QZr ( 3  4.6). The difficulty in establishing the exact value of the free-stream velocity 

0.9 l . o ~  

I-- b --I I 
Measuring station 

0.7 
edge I 

I I 1 I I I I 
0 0.4 0.8 1.2 -1.2 -0.8 -0.4 

zlb 

FIGURE 8. Wake profile (tangential component) downstream of the blade trailing edge. 
, 1 -Au,[l  -(z/b)%]2. A, xi1 = 0.25, R = 0.975, b = 1.63 in; 0, x/Z = 0.26, R = 0.775, 

b = l i n .  

might have resulted in the departure of the data at R = 0.985 from (28). Neverthe- 
less, it is clear that the tangential component follows the law of the wall at most 
of the blade locations. The two-dimensional logarithmic velocity prof2e does 
indeed give good results in this particular three-dimensional configuration (con- 
sistent with Prahlad's (1968) conclusion that the law of the wall is valid in three- 
dimensional boundary layers). 

The stagnation pressures of the relative flow downstream of the trailing edge 
were obtained with the aid of a rotating probe and probe holder developed by 
McCafferty (1967). The wake velocity profiles derived from these measurements 
at two radii are plotted in figure 8, where 1 refers to local chord length, which 
corresponds to the length of the flat plate. The measured wake profile (tangential 
component) shows good agreement with the theoretical profile for two-dimen- 
sional wakes proposed by Schlichting (1960, p. 601); but the decay of the wake 
seems to be faster than that observed in the case of a flat plate (Page 1933). 
The radial velocities present in the wake are largely responsible for its faster 
diffusion. 
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4.4. Radial velocity profiles 

The measured radial and tangential velocity components are shown in a polar 
plot in figure 9. The measured radial velocities are generally lower than those 
derived from Mager's profile ((12)-(14)). Furthermore, it is found that the radial 
velocities in this case are generally higher than those of the axisymmetric disk 
(Cham & Head 1969), and that they do not follow the triangular representation 
of Johnston (1960). Clearly, the maximum radial velocity (about 14-18 yo of 

0 0.1 0.2 0.3 0.4 0.5 0 6 0.7 0.8 0.9 1.0 

u/Qr 

FIGURE 9. Plot of polar velocities. 

Predicted 
, equation ( 3 6 )  

Measured 
19 = 150" 0 = 210" 

A r 3- 

_.-.- , Mager ((12)-(14)) 0 v 0 rn 
- - - - - - , equation (50) R = 0.6 0.72 0.82 0.6 0.82 

the free-stream velocity) occurs very near the blade surface. The location of the 
maximum velocity (i.e. u/Qr = 0.7, in this case) seems to agree with Cham & 
Head's (1969) measurement on a disk. It is very unlikely that either Johnston's 
(1960) or Mager's model is valid in a rotation-induced three-dimensional bound- 
ary layer, even though Cham & Head (1969) report close agreement with Mager's 
profile for an axisymmetric disk flow. With this in mind a derivation of the 
nature of the cross or radial flow profile, valid for the boundary layer on a rotating 
blade, is now attempted. 

The analysis is based on the developed flow (i.e. 8/80 = 0) ,  and is valid for the 
outer layer, where shear stresses can be neglected. By neglecting aja0 terms in 
(2) and (3), and eliminating w from them one can obtain 
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It is supposed that the radial velocity component is related to the tangential 
velocity component by 

where B is a constant. Hence, 
w / a r  = Bf(u/Qr), (31) 

(3% (33) 
aW au U aw au 
ar ar r ax a2 
_ -  - BQf+B-Y--B- f’ and - - - Bfl-. 

Substituting (31)-(33) into (30), after some simplification one obtains 

where f’ is the derivative off with respect t o  u/Qr. Since f = 0 when u = f ir ,  
the solution of (34) is 

f = [; (1-;)]$. 

The measured data in the outer layer, shown in figure 9, seem to fit 

W -- - 0.3 [& (1 -;)I*. 
Qr 

(35) 

It is evident that the behaviour of the rotation-induced radial or cross-flow 
profile is different from that of cross-flow induced in a stationary system owing e.g. 
to free-stream turning. Additional data are needed before any further analysis can 
be made. The agreement of the measured data (figure 9) with the various models 
described is poor at  the buffer layer, which overlaps between the collateral region 
and the outer layer. The reason for this is experimental inaccuracy close to the 
wall, and the inadequacy of the inviscid model in this region. It seems that the 
equations of motion can be solved, for the buffer layer, only numerically, and 
given some physically realistic model of the turbulence: Nash (1969) and Brad- 
shaw (1971) have made some progress in this direction. One can conclude that, 
apparently, the outer-layer profile in a rotating boundary layer (without pressure 
gradients) can be adequately represented by 

w / a r  = C, [(I - u/Qr)  (u/Qr)]$, (37) 

and the collateral region by w = EU.  (38) 

4.5. Momentum thickness O,, 
The experimental values of momentum thickness O,, are derived by numerical 
integration of (6), using the measured velocity profile. These are compared with 
the predicted values in figures 3 (a)-(d). The predictions are good at all radial 
locations, except near the hub (R = 0.55,B > 3), where the profile measurements 
are not very accurate for reasons mentioned above, and owing to complex inter- 
action of the hub boundary layer and the blade boundary layer at  this location. 
It is observed, furthermore, that there is a sudden increase in O,, near the trailing 
edge. This is caused by a decrease in e at these locations (see figures 4(a),  (b) ) ,  
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and this effect can be attributed to wake effect, where the radial velocities decay 
very fast. The agreement between the theory and experiment at  the tip 
(R = 0.985) is poor (see $4.6). 

4.6. Plow in the tip region 
In  a region close to the annulus wall, tangential velocity component distribution 
is found to be very different from other radial locations. As an example, con- 
sider the measured distribution of the tangential velocity component at  6' = 180' 

1 "O 

1 I I I 1 
\ I  

5 4 3 2 1 \ O  

z, in. 

FIGURE 10. Tangential profiles in the tip region. 

a 0 0 
R = 0.93 0.955 0.985 

and R = 0-985 shown in figure 10. It is seen that, as the distance from the blade 
surface increases, the tangential velocity component increases, and reaches a 
value different from the free-stream velocity f i r .  This region is followed by one 
where the tangential velocity component changes very little, and may be con- 
sidered constant. Then the tangential velocity component increases, approaching 
the free-stream value asymptotically, this behaviour is also observed at 
R = 0.955 and 0.93 (figure lo), and a t  other 6' locations. 

Bearing these points in mind, the tip region can be divided in three. (i) Near 
the blade surface, effects of the viscosity of the fluid cannot be neglected: this 
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is the blade boundary layer. The boundary-layer thickness is determined by the 
location a t  which the tangential velocity component reaches a constant value. 
(ii) The region adjoining the blade boundary layer, in which the tangential 
velocity component is constant, is the 'core region'. (iii) The region outside the 
core region, where the tangential velocity component increases to the free- 
stream value Qr, is the 'interference region'. 

I 
/ 
/ 

o /  
O /  

A' 
/- 

+--- 
-I----- 

0 O" 0.005 

0.90 0.92 0.94 0.96 0.98 1.00 

R 

0.90 0.92 0.94 0.96 0.98 1.00 

R 

FIGURE 11. O,, and E variation near the tip. 

Measured: a, E (0 = 270") 0, a,, (8 = 150", 270') 
9 011 

_ _ _ _ _ _  Predicted: __ € 7  

(i) Plow in the blade boundary layer. The boundary-layer thickness a t  the tip 
is determined by a location where the tangential velocity component approaches 
to a constant value U,, which is smaller than the free-stream value f ir .  It is sup- 
posed that the pressure does not vary across the boundary layer. Since the radial 
velocity component is zero at  the edge of the boundary layer, the radial pressure 
gradient is given by 

The tangential velocity measurements (figure 10) indicate that the radial pres- 
sure gradient increases as the annulus wall is approached. Figure 8 clearly shows 
the increase in blade static pressure as the radial distance increases. This agrees 

36 F L M  51 
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with the result obtained from (39) ,  based on measurement of V,. An attempt has 
been made to calculate E and O,, near the tip region, by allowing for a radial 
pressure gradient neglected in the analysis of § 2. If the radial pressure gradient 
term (l/p) (@I/&)  is introduced in ( 3 ) ,  and if this term is carried through in ( 5 )  
and (18), the additional term - 2-43(A /R)  (a$JaR) appears on the right-hand 
side of (20). No prediction of the core velocity U,, or a$JaR, was forthcoming 

Blnde 
’Interference’ ‘Core’ boundary 

region -I region hyer 
I. 1 -  1 k 

1 

I } velocity profiles 

FIGURE 12. Qualitative nature of velocity profiles in the tip region. 

so that an attempt was made to explain the large increase in 011, and decrease in 
E ,  measured near the tip, by using the measured U, in (40).  Equation (19), and 
the modified (20), were solved numerically to derive O,, and E near the tip for 
asymptotic conditions (alas = 0). The boundary conditions used for the solution 
of (19) and (20) are those given by (21) at R = 0-9. The calculated and measured 
O,, and e, plotted in figure 11, show good agreement. It is evident that, for 
accurate prediction of the boundary-layer characteristics near the tip, it is essen- 
tial to include the pressure gradient term and the consequent decreases in e 
towards the tip. 

(ii) Plow in the core region (au/az = 0). It is clear, from (2), that w = 0 for the 
developed case. Thus ap1a.z = av/& = 0. 

(iii) Plow in the interference region. In  the blade boundary layer, the effect 
of rotation is to induce a positive or outward radial velocity. Because of the an- 
nulus wall, the radial flow at the tip is directed axially outward. This results in 
opposing flows, i.e. the axial flow at the outer edge of the interference region 
(point B in figure 12) is inward; whereas, at  its inner edge (point C in figure 12), the 
same flow is outward. So the axial velocity component changes its sign in the 
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interference region. The interaction of the two opposing flows produces a radially 
inward flow. Figure 12 is a qualitative picture of velocity profiles in the tip region, 
based on the above heuristic argument. 

4.7. Wall shear stress measurements 
There has been discussion about how to measure the wall shear stress in three- 
dimensional boundary-layer flows: Pierce & Krommenhoek (1968) showed, by 
comparing it with the direct method that the Preston tube technique is adequate; 
and one group used this technique for rotating boundary layers (Halleen & 
Johnston 1967). Here, too, thePreston tube technique was used: a pitot tube was 

1 
105 2 3 4 5 6 7 89106 2 3 4 5 6 7 8 910' 

R, 
FIGURE 13. Coefficient of skin friction for a rotating blade. R, = iZr20/v. 

, Schlichting(equation (41)) 

Measured 0 0 A 0 X 

e = 1.04 1.56 2.64 3.18 4.76rad 

mounted flush to the surface of the rotating helical blade, and, at each position, 
the Preston tube was aligned in the resultant flow direction, to measure the total 
pressure at  that position. From the known static pressure distribution, a dynamic 
pressure was determined. The dynamic pressure was then related to the wall 
shear stress by the calibration scheme of Pate1 (1965). 

Wall shear stress measurements were made at  different rotational speeds of 
200, 300, 400, 450, 600 and 700 revlmin by a Preston tube of & in. (outside) dia. 
In  figure 13, the skin friction coefficients (based on the resultant shear stress T ~ )  

are plotted against the Reynolds number based on the distance measured from 
the leading edge of the blade. The measured skin friction coefficient is much 
larger than the skin friction coefficient for a two-dimensional flat plate given by 
Schlichting, 
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where Rz is the Reynolds number based on the distance from the leading edge 
x = re, and the local velocity fir. Also, the measured values of C, for the rotating 
blade show a consistent variation with 0, in that all the measured values, a t  any 
given 8, can be represented by parallel straight lines on the logarithmic plot 
(figure 13). So in addition to Reynolds number, the expression for the skin friction 
coefficient must include a parameter representative of rotation effects. 

Even though the Coriolis force in the tangential direction is zero in the free 
stream, its value is non-zero inside the boundary layer; this tends to change the 
turbulence characteristics, and hence the shear stress. The most appropriate 
parameter for this case seems to be the ratio of the Coriolis to the inertial force. 

0 
0 0.25 0.50 0.75 1 .00 

(d 
FIGURE 14. Ratio of skin friction coefficients Cf/Cfo  plotted against the rotation parameter 

€0 (0 rad). __ , equation (43) ; 0,  measured (450 rev/min) . 

The Coriolis force inside the boundary layer in the tangential direction is 2Qw, 
whereas the dominant inertial term in the developing region is u(au/aO)/r. 
Furthermore, 

1 au ias 
G a s  - 8%) 

as can be seen from (12)-(14). Furthermore, 88/88 - 8/13 in the developing region. 
Hence, the ratio of Coriolis force to inertial force, which is a measure of the rota- 
tion effects, is 

2nw 
N - se. 

2QW 
R -  

O - u(au/aO)/r u2(88/88)/r& 

The skin friction data at  450revlmin seem to fit (figure 14) 

which involves the required rotation parameter. 
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Equation (43), and the data plotted in figures 13 and 14, show considerable 
increase in skin friction coefficient for a rotating blade, as compared with a 
stationary flat plate with equivalent length re, and free-stream velocity fir. 
McCroskey, Nash & Hicks (1971) reported increased skin friction stress on a 
rotating flat plate blade, using a numerical solution of Nash (1969), who inte- 
grated the equations of motion by a finite-difference method. The shear stress is 

1 2 3 4 5 6 

0, rad 

(43); ---- , McCroskey et al. (1971); m, present measurements. 
, equation FIGURE 15. Ratio of skin friction coefficient C,/Cf0 plotted against 8. - 

determined by the integration of the modified turbulent energyequation modified 
by the inclusion of empirical functions of a form which has proved successful 
in two dimensions, and somewhat successful with the stationary type of three- 
dimensional boundary layers; but its validity to rotating case h a  yet to be 
established. The predictions of McCroskey et al. (1971) are plotted against 8, the 
chord-wise angular1 ocation, in figure 15. Also plotted in this figure are the values 
obtained from (43), using predicted 6,  and the authors' measurements. The agree- 
ment seems to be reasonably good. 

For the developed flow (alas = 0) ,  the skin friction coefficient must be repre- 
sented by a quantity which does not include the distance from the leading edge. 
Plotted against Reynolds number based on local radius and local free-stream 
velocity in figure 16, it is well represented by 

C, = 0*079(R,)-%, (44) 
where R, is the Reynolds number (i.e. Qr2/v).  

Hence, the rotation effects on skin friction stress are large, and their inclusion 
is essential for accurate prediction of the boundary-layer characteristics. The 
correlations proposed are, in the developing region, 

Cf = 0.0582(firrb'/v)-* [1+ 0.85(~0)4], (45) 
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and, in the developed region, 
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C, = 0*079( Qr2/v )4 .  

3 I I I I I I i r i  

2 3 4 5 6 7 8 9 1 0 '  1 0 5  

R, 

F I G ~ E  16. Plot of skin friction coefficient against Reynolds number based on local 
radius R, = Rr2/v. -, equation (44). Measured: 0 , B  = 3-18rad; x , 8  = 4.76rad. 

4.8. Turbulence intensity 

To determine the nature and magnitude of turbulence intensity inside the 
boundary layer, an attempt is made to measure its tangential component 
((21'2)&/Qr). Measurement of the other two components requires extremely sophis- 
ticated instrumentation and signal transmission. 

The voltage sensed by a wire aligned in the radial direction is given by King's 
Law, 

where u', v' are fluctuations in the u and v velocity components, respectively. 
The angularity error is smalI, since the resultant flow deviation from the tangen- 
tial direction is of the order of 10" in the turbulent regions of the blade (figures 
4(a ) ,  (b ) ) .  Since axial velocity is small, and intensities are assumed to be low, 
(47) can be simplified to 

E2 = Ei +B[(u + u ' ) ~  + (V + v')~]*, (47) 

The turbulence intensity in the tangential direction can then be expressed as 

wherez, E,a,remeanvoltage andvoltage a t  zerovelocityrespectivelye,,, = r.m.s. 
value of the fluctuating voltage. Since V/U < 1, the turbulence intensities are 
derived by measuring erms, then using (49) and neglecting the term involving 

The turbulence intensities measured at three locations are plotted in figure 17 
and compared with the flat plate data of Klebanoff (1955). Their tangential 

v/u. 
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component is generally higher than that in the case of a flat plate, and is consist- 
ent with the shear stress measurements reported in 94.7, if it is assumed that the 
turbulence intensity is directly proportional to the local shear stress (Bradshaw, 
Ferris & Atwell 1967). 

I I I I I 1 
0 0.2 0.4 0.6 0.8 1 0  1.1. 

21s 
FIGURE 17. Variation of turbulence intensity (tangential component) across the boundary 
layer. - , flatplate (Klebanoff 1955). 

0 n 0 A 
I9  170' 170' 300' 300" 
R 0.92 0.82 0.82 0.92 

5. New calculations 
The radial velocity profile and wall shear-stress measurements, reported in $4, 

have revealed appreciable departure from the assumptions (( 12)-( 15)). In  order 
to find the effect on the prediction of Oil, the following calculations were made. 

The radial velocity profile (36), which is valid only in the outer region of the 
boundary layer, is not suitable for use in a momentum integral approach. 
The profile represented by 

w = U€J 1 - z / 6 )  (50) 

aeems to fit the entire region (figure 9), where em is the measured limiting stream- 
line angle, which agrees with the values predicted using Mager's profile. 

Here, the radial equilibrium equation (3) is redundant, since both the magni- 
tude and the profile are assumed to be given by (50). If  one incorporates these 
assumptions in (4)-(11), one obtains the following for a,, in the Mymptotic 
region ( a / N  = 0 ) :  
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whose solution is 
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O,, = 0.0122- - ; 
( l r z y  

in developing region (a/% $. 0 ) ,  the equation corresponding to (24), with the new 
radial velocity (50) and wall shear stress (45), is 

where (54) 

Equation (53) is solved numerically, with the boundary condition 3" = 0 
at 0 = 0, and values of O,, are derived from (54). The results obtained are plotted 
in figures 3 (a) ,  ( b )  for R = 0.55 and 0.72. The trend is similar a t  other radii. 

It is somewhat surprising that the values of O,, predicted by the previous 
calculation ($2,  figures 3(a) ,  ( b ) )  show better agreement with the measured 
values than those predicted by this new calculation. The reason is that the as- 
sumed values for radial velocity (12)-( 14) are lower than the measured values, 
and this has a tendency to over-predict GI,, where as the shear stress assumption 
based on stationary flat plate values, lower than the measured values in a 
rotating case, tends to predict lower values of 011, so that, in combination, the 
two assumptions may cancel each other in this particular case, predicting results 
closer to the experimental values. But the new shear stress and radial velocity 
correlations should be used for meaningful prediction of the boundary-layer 
growth. 

6. Concluding remarks 
Thus, rotation-induced radial flow, however small it may be, substantially 

changes the characteristics of the boundary-layer growth along the blade, 
showing that two-dimensional calculations are inapplicable to cases of the sort 
under consideration. 

The wall shear stress measurements indicate that the skin friction coefficients 
on a rotating blade are appreciably higher than those of a flat plate. The proposed 
skin friction correlations (45), (46), based on a larger number of measurements 
under a wide variety operating conditions, include not only the Reynolds number 
effect, but also the rotation effect R,. Inclusion of the pressure gradient effects in 
these correlations would greatly enhance its practical value. If the effect of rota- 
tion is to increase the skin friction stress by 40-60 % at some blade locations, then 
its incorporation into the boundary-layer equations is obviously necessary. The 
turbulence intensities in the tangential direction are found to be generally 
higher than those of stationary flat plate. This is consistent with the shear stress 
measurements, at  least qualitatively. 

The applicability of the two-dimensional law of the wall to the tangential 
component of the three-dimensional boundary layer has been established; 
future efforts should be directed towards establishing a vectorial form of the law 
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of the wall and of the wake; they would necessarily include the gathering of much 
experimental data, in many different configurations. The cross-flow representa- 
tion of Mager and Johnston may not yield an accurate account of radial flows 
on rotating blades: the three-layer model seems to provide a better insight into 
the phenomena. The outer layer profile can be represented by a relation such as 
(37))  but the description of the collateral region and buffer layer needs further 
elaboration. The ‘core’ and ‘interference’ regions near the blade tip are strange 
new phenomena: complex interaction of radial flows with the annulus wall and 
its boundary layer has yet to be understood. Finally, the prediction of O,, and 
e by the momentum integral method gives reasonably good results, but an im- 
proved radial velocity model would lead t o  even better predictions. 
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